
When More Parameters Reduce Training Performance: Linear Neural Networks

Anish Lakkapragada
Lynbrook High School

San Jose, CA 95129
alakkapragada176@student.fuhsd.org

Abstract

Linear Regression and neural networks are widely used algo-
rithms for modeling data. Neural networks in particular have
the ability to model complex functions beyond lines due to
nonlinear activation functions between their subsequent lay-
ers. Neural networks without such activation functions just
model lines, and thus are not used as they model the same
form as linear regression. However, another explanation that
we propose in this paper for the impracticality of such neural
networks compared to linear regression is that they actually
reduce performance. Their excess of parameters make them
harder to optimize, and thus they require more training it-
erations to converge to the optimal solution and are still less
likely to do so. We prove this hypothesis through detailing the
optimization of both algorithms and then empirically com-
paring the performance between both models on synthethic,
noisy datasets.

Introduction
Neural networks (McCulloch and Pitts 1943) distinguish
themselves from linear regression by their ability to model
nonlinear data. Their activation functions which transform
output from one layer before feeding it to the next give them
this unique ability. The common explanation for why not
to use neural networks without such activation functions,
which we refer to as linear neural networks (LNNs), is that
they only can model lines and thus there is no advantage to
them compared to a linear regression.

In addition to this, we propose another reason for the im-
practicality of LNNs is that they actually perform worse than
linear regression on the same set of data, despite the fact that
they model the same form. Our reasoning is that the excess
of parameters in LNNs corrupts the optimization process as,
like in all neural networks, currently suboptimal parameters
will be used in the calculation for how other current param-
eters should update to increase the model’s performance.

We test our hypothesis through a debrief of optimization
procedures on both models and experiments on synthethic
datasets of varying noise levels. We detail our reasoning in
the next section.

Methods
If we have a univariate dataset X and associated labels y, as-
suming the relationship between X and y is linear, a linear

regression model given by the equation ŷi = axi + b can be
created where ŷi is the ith prediction for the input xi. In this
case, a and b would be the optimal weight and bias respec-
tively to minimize the mean of the squared residuals (they
can be solved through a closed-form solution (i.e. normal
equation.)

Neural networks for univariate data can similarly be con-
structed as the following. The output for the first layer z1
(represented as a vector over the entire dataset) is given
by z1 = w1x + b1. In this case, wn and bn denote the
weight and bias for the nth layer respectively. The output
of an LNN with a second layer would then be w2z1 + b2 or
w2w1x + w2b1 + b2. Note that an LNN, regardless of the
amount of layers, only creates the form of a line and that an
LNN with one layer is a linear regression. For any LNN, the
output of the last layer would be the predictions.

LNNs require iterative optimization, namely gradient de-
scent, to be solved. Gradient descent updates each of current
parameters based on the derivative of the objective function
with respect to that parameter. For any parameter p at time
step t, gradient descent will update the parameter as such1:
pt+1 = pt − α dJ

dpt
. In our case, our objective function J

to be minimized is the mean squared error (MSE) given by
J = 1

N

∑N
i=1(ŷi−yi)

2. The derivatives used to optimize the
linear regression parameters weight m and bias b through
such optimization are shown in Equation 1.

dJ

dm
=

2

N

N∑
i=1

(ŷi − yi)xi;
dJ

db
=

2

N

N∑
i=1

(ŷi − yi) (1)

= LNN optimization to the optimal parameters a, b is more
cumbersome because of the increased amount of parame-
ters. For the two-layered neural network given by w2w1x+
w2b1 + b2, the only guaranteed solution for this neural net-
work resemble the optimal model ŷi = axi + b is for
w2 = a;w1 = 1; b1 = 0; b2 = b. The derivative of parame-
ter w2 used to optimize w2 is given below:

dJ

dw2
=

2

N

N∑
i=1

(ŷi − yi)(w1xi + b1) (2)

1α is the learning rate which controls the rate of change of
the parameters by their derivatives and is typically from 0.01 to
0.0001.

Similarly, the derivative of the J with respect to b1 would
be the same as above except with w2 and not z1. In order
for the optimal solution w2 = a to be met, we would need
to have dJ

dw2
be equal to dJ

dm and the current value of w2

to be the same. This will only ever happen when the cur-
rent value of w1 and b1 are at their optimal values of 1 and
0 respectively. Gradient descent initializes parameters ran-
domly before optimization, so this particular arrangement is
extremely unlikely and thus convergence over iterations of
all parameters to the ideal solution that best minimizes the
objective function (MSE) is unlikely to happen just as fast as
linear regression. Through this demonstration, it can be seen
how this problem will only be further exacerbated if further
layers (and parameters) were added to the LNN.

Empirical Experiments
We test the performance of linear regression compared to
LNNs from 2 to 10 layers on synthetic datasets with varying
levels of noise.

Data
We detail our procedure to generate synthetic data that has
a linear form in this section. For simplicity, all of our data
in our experiments are univariate, or one-dimensional. Note
that even if our input data was multivariate, the same results
would occur as linear regression or LNNs on multivariate
data just leads to linear regression on each dimension of the
input data.

We first sample the input data vector x from a standard
normal distribution. We randomly sample scalars a and b
from the same distribution as the respective weight and bias
of the data. This gives us y, the label vector, is equal to ax+
b.

However, because no practical data is perfectly linear we
add noise to our dataset. We sample noise from a standard
normal distribution and then scale the noise to the size of the
pre-existing data by multiplying it by the average of ax+ b.
This scaled noise is then multiplied by a noise coefficient β,
which controls the extent of corruption given by the noise.
Finally this noise adjusted by magnitude and scaled to the
size of the data is added to the pre-existing labels. The full
process to generate the noisy label vector ynoise is given be-
low in Equation 3.

ynoise = ax+ b+ β ∗ N (0, 1) ∗ E(ax+ b) (3)
Note that when the noise is applied, the parameters of the

line of best fit changes - we denote the new optimal weight
as a∗ and bias as b∗.

Results
We compare the performances of a linear regression model
(or an LNN with one layer) to LNNs with 2 to 10 layers. For
each experiment, using the dataset procedure above, we gen-
erate 1000 points for training the model and 200 for which
the model is tested on. Both datasets are generated with the
same noise coefficient. We first train each model on the the
training data for an ample 10,000 iterations. At each itera-
tion, we track the model’s MSE on the train and validation

datasets and the model’s parameters deviation from the op-
timal weight and intercept.

We calculate this optimal parameter deviation D of the
model by first solving the optimal weight and intercept by
solving the normal equation (a closed-form solution) on the
training data. Because all models are a linear function, we
can simplify all models to a linear function mx+ b and then
measure D as |m − a∗| + |b − b∗|. Over the iterations, this
deviation should reduce.

We perform this experiment 100 times for each of the
noise coefficient values 0.05, 0.15, 0.3, and 0.5. All our
models are written in PyTorch, and our models are trained
with stochastic gradient descent (SGD) (Robbins and Monro
1951), an iterative optimization method, using a learning
rate of 0.001. We report the mean and standard deviations
of the MSE (across all 100 experiments) at the end of train-
ing for all models and noise coefficients in Table 1. Figure 1
shows the average optimal parameter deviation D through-
out training over the 100 experiments with a noise coeffi-
cient of 0.05 for each model. We note that the ordering of
the individual line plots is the same across all noise coeffi-
cients.

Noise Coefficient β

0.05 0.15 0.30 0.50
M

od
el

Ty
pe

an
d

N
um

be
ro

fL
ay

er
s LinReg 0.0028 ±0.005 0.0197 ±0.025 0.086449 ±0.1197 0.2840 ±0.4667

LNN-2 0.0033 ±0.006 0.0199 ±0.025 0.086451 ±0.1197 0.2842 ±0.4668

LNN-3 0.004 ±0.007 0.023 ±0.04 0.09 ±0.1194 0.2844 ±0.4665

LNN-4 0.05 ±0.27 0.03 ±0.05 0.101 ±0.13 0.3059 ±0.47

LNN-5 0.08 ±0.28 0.09 ±0.26 0.196 ±0.42 0.358 ±0.61

LNN-6 0.21 ±0.55 0.19 ±0.58 0.26 ±0.59 0.551 ±0.9

LNN-7 0.39 ±0.85 0.40 ±0.98 0.52 ±1.02 0.8172 ±1.32

LNN-8 0.69 ±1.48 0.74 ±1.14 0.61 ±0.87 1.0087 ±1.35

LNN-9 0.87 ±1.27 0.74 ±1.08 0.72 ±1.06 1.0772 ±1.45

LNN-10 0.98 ±1.35 0.90 ±1.33 0.94 ±1.17 1.108 ±1.296

Table 1: Table of the mean and standard deviations of the
testing MSE after training across all 100 runs for all differ-
ent models and noise coefficients. LNN-n resembles a linear
neural network with n layers. More significant figures are
given when required to draw comparisons.

Figure 1: Plot of the average optimal parameter deviation D
across all 100 experiments for each model during training.

From the figure above, it is clear that the optimal param-
eter solution is achieved only by linear regression and an
LNN with two or three layers. Models with less layers typ-
ically converge to the optimal parameters (D = 0) faster.
As the amount of layers in the LNN increases, the model
typically converges and plateaus at increasingly suboptimal
solutions. LNNs with the highest amount of layers are likely
never going to converge to the optimal parameters. This is
to be expected as the excess of parameters in LNNs com-
pared to linear regression likely leads to local minimas in
the objective function; it is these local minimas which cause
the model to be stuck in suboptimal parameters instead of
the parameters that lead to a global minima in the objective
function. In contrast, linear regression has a convex objec-
tive function with only one minima - thus being very easy to
minimize.

This is also reflected in the testing MSE, where models
with the least amount of layers consistently have the lowest
average MSE compared to those with more layers.

Conclusion
We first prove the superiority of linear regressions compared
to LNNs by a comparison of their optimization. We then
validate this proof by testing linear regression models and
LNNs on 4 different levels of noise across 100 datasets for
each level. We conclude LNNs are unable to perform the
same as linear regressions due to being harder to optimize
because of their excessive parameters.

References
McCulloch, W. S.; and Pitts, W. 1943. A logical calculus
of the ideas immanent in nervous activity. The bulletin of
mathematical biophysics, 5(4): 115–133.
Robbins, H.; and Monro, S. 1951. A stochastic approxima-
tion method. The annals of mathematical statistics, 400–
407.

